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Abstract
Quantum-computing ideas are applied to the practical and ubiquitous

problem of fluid dynamics simulation. Hence, this paper addresses two
separate areas of physics: quantum mechanics and fluid dynamics (or
specifically, the computational simulation of fluid dynamics). The quan-
tum algorithm is called a quantum lattice gas. An analytical treatment of
the microscopic quantum lattice-gas system is carried out to predict its
behavior at the mesoscopic scale. At the mesoscopic scale, a lattice Boltz-
mann equation with a nonlocal collision term that depends on the entire
system wave function, governs the dynamical system. Numerical results
obtained from an exact simulation of a one-dimensional quantum lattice-
gas model are included to illustrate the formalism. A symbolic math-
ematical method is used to implement the quantum mechanical model
on a conventional workstation. The numerical simulation indicates that
classical viscous damping is not present in the one-dimensional quantum
lattice-gas system.
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1 Introduction

1.1 Overview

The purpose of this paper is to show that a phase-coherent quantum computer
can be used to simulate the behavior of a system of massive quantum particles,
propagating and colliding on a discrete space-time lattice. This discrete quan-
tum particle system is called a quantum lattice gas. I have used principles and
concepts from quantum mechanics instead of from classical mechanics to formu-
late “local rules” for an artificial microscopic particle dynamics. In a quantum
lattice gas, this is possible because a network of two-energy level quantum sys-
tems is used to encode the configuration of particle occupancies throughout the
lattice.

There are two parts to this paper. First, I analyze a globally phase-coherent
and entangled quantum lattice-gas system governed by the many-body Schrödinger
equation of quantum mechanics.1 The many-body Schrödinger equation is re-
formulated as a Boltzmann equation of kinetic transport. Assuming the quan-
tum computer’s wave function does not decohere by uncontrolled entanglement
with the external world, the main analytical result of this paper is the deriva-
tion of a lattice Boltzmann equation that exactly describes kinetic transport at
the mesoscopic scale in the quantum lattice gas. That is, the lattice-Boltzmann
equation is an exact representation of the particle dynamics, including all effects
due to quantum superposition and entanglement. This reformulation of many-
body quantum mechanics represents a quantum computing application geared
towards the direct simulation of physical dynamical models. A hydrodynamic
fluid simulation is considered here as a test case.

Second, numerical data taken from an exact simulation of a globally phase-
coherent quantum lattice-gas system is presented. The simulation method uses
symbolic mathematics to implement a quantum mechanical system in the second
quantized representation. A globally phase-coherent wave function is simulated
on a classical computer. This is possible because the number of spatial sites of
the lattice is small and the number of qubits per site is few. The main finding

1 The quantum state of the quantum lattice gas is said to be globally entangled when qubits
in the system are entangled with other qubits in the system positioned arbitrarily far away in
the lattice.
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from the simulation is that it is possible for mass density waves to oscillate
indefinitely. The simulation confirms that there is no viscous damping in the
hydrodynamic sound mode of the artificial fluid.

1.2 Background

Other types of quantum lattice gases have been studied, beginning in the mid
1990s, by Bialynicki-Birula [1], Succi [2, 3], Meyer [4, 5], and Boghosian and Tay-
lor [6] to model the relativistic Dirac equation and the nonrelativisitic Schrödinger
equation. In contrast, the macroscopic scale behavior of the quantum lattice
gas presented here is classical, even though the microscopic scale dynamics is
quantum mechanical rather than classical in nature. The quantum lattice gas
reduces to a classical lattice gas only if the collision process causes a particular
incoming configuration of particles to scatter into only one single “outgoing”
configuration.2

In two previous papers on quantum lattice gases [7, 8], I considered a quan-
tum spin system where the system wave function was collapsed into a tensor
product state over the spins (or qubits) after each collision step. This allows for
local entanglement to occur temporarily and avoids global entanglement alto-
gether when the particles propagate through the lattice [7]. Allowing for only
short-range and short-time entanglement of qubits, the quantum lattice-gas sys-
tem is described at the mesoscopic scale by a lattice Boltzmann equation, with a
local collision operator that obeys the principle of detailed balance [8] (we may
refer to this model as a factorized quantum lattice gas). It provides a way to
implement the lattice Boltzmann equation in an unconditionally stable manner
on a classical computer. Although quantum mechanical ideas inspired the for-
mulation of the collision process, in the end, the factorized quantum lattice gas
is a probabilistic classical process. The salient feature of the factorized quan-
tum lattice-gas formulation is that it is suited for implementation on an array
of small quantum computers, interconnected by a classical communication net-
work. Therefore, the previous papers do not address the situation where quan-
tum superposition and entanglement can spread throughout the entire quantum
computer. This situation is treated here.

1.3 Organization

In Section 2, I introduce the quantum lattice-gas formulation from an analytical
perspective. The quantum lattice gas is treated at the microscopic and meso-
scopic scales in Sections 2.1 and 2.2, respectively. When the quantum computer
is fully coherent throughout the entire course of the simulation, the collision op-
erator is nonlocal. Evaluating it requires knowledge of the entire system wave
function on the quantum computer. An exact representation of the quantum
lattice gas’ mesoscopic behavior is developed in Section 2.2. Its mesoscopic
behavior is governed by a lattice-Boltzmann equation.

2 This follows since it is a direct generalization of a classical lattice gas with quantum bits
replacing classical bits.
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The quantum lattice-gas formalism is presented from a numerical perspec-
tive in Section 3. The numerical methodology used in the simulation of the
quantum system is presented in Section 3.1. The numerical method discussed in
Section 3.1.1 is based on a representation of a universal quantum gate expressed
in terms of the creation and annihilation operators. The symbolic rules used
to carry out the exact simulation is described in Section 3.1.2. A simple one-
dimensional lattice-gas model, used in this paper for test purposes, is described
in Section 3.2. I have included various computer simulations with both classi-
cal and quantum mechanical microscopic dynamics. The classical and quantum
mechanical versions of this simple one-dimensional lattice-gas model, called the
1D3Px model, are described in Sections 3.2.1 and 3.2.2, respectively. Simula-
tion results are presented in Section 3.3. The classical and quantum mechanical
simulations results are presented in Sections 3.3.1 and 3.3.2, respectively. The
classical simulations, provided for comparison purposes, are done at the micro-
scopic scale and also in a classical mesoscopic mean-field approximation. Then,
I present an exact simulation of the quantum 1D3Px model, with three qubits
per site for small systems. Approximation schemes are needed to compute the
many-body dynamics on a classical computer, except in the case of very small
system size or systems with very few particles. An exact quantum simulation of
a small cluster, comprising 21 qubits, is carried out on a conventional worksta-
tion using a symbolic mathematics technique that is described in Section 3.1.
The numerical simulation gives us a way to understand the quantum lattice-gas
method in concrete terms and is a necessary step toward achieving numerical
simulations on quantum computers.

A brief summary of the results and a few closing remarks are given in Sec-
tion 4.

2 Analytical Treatment

2.1 Microscopic scale

In quantum computing [9, 10], a two-level quantum bit (called a qubit) represents
the smallest unit of information that may be in a superposition of the discrete
states |0〉 and |1〉. A qubit |q〉 = α|0〉 + β|1〉 has an amplitude α of being in
the zero state, |0〉, and another amplitude β of being in the one state, |1〉. The
complex coefficients are constrained by |α|2 + |β|2 = 1 so that the probability of
the qubit being in the zero state plus the probability of it being in the one state
is unity. For any unitary quantum computation, one can describe the algorithm
by specifying a unitary evolution operation, in our case formally written as
eiĤτ/h̄, acting on the system wave function, |Ψ(t)〉, which constitutes the state
of the quantum computer’s “memory.” With N qubits, the quantum state
|Ψ(t)〉 resides in a large Hilbert space with 2N dimensions. A new quantum
state |Ψ(t+ τ)〉 is generated by application of a unitary operator (which could
be represented by a unitary matrix of size 2N × 2N ) for a short duration τ as

|Ψ(t+ τ)〉 = eiĤτ/h̄|Ψ(t)〉. (1)
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By repeated application of eiĤτ/h̄, an ordered sequence of states is generated
and each one is given a unique time label. If the first state is labeled by t
then the next one is labeled by t + τ , and the next by t + 2τ , and so forth.
In this way, think of the computational time advancing incrementally in unit
steps of duration τ . Of course the state of the quantum computer exists at
all intermediate times, say at t+ τ/2, but for our purposes we need to consider
only the state at intervals of the time step τ . Formally, the quantum computer’s
evolution is invertible by application of the adjoint of the evolution operator

| Ψ(t− τ)〉 = e−iĤτ/h̄ | Ψ(t)〉. (2)

This computational picture is consistent with the Heisenberg picture of quantum
mechanics. For any reversible algorithm chosen, the task is to map the algorithm
onto the dynamical evolution of interacting qubits within the physical device,
which can be driven by external control.

2.1.1 Preliminaries

Consider a quantum computer with qubits arranged in a lattice-based array
with the following properties:

1. V is the number of lattice sites .

2. B is the number of qubits per site (and the number of nearest neighbors).

3. N = V B is the total number of qubits.

4. 2N is the size of the full Hilbert space.

5. 2B is the size of the on-site submanifold, denoted B (and the number of
on-site configurations).

At each site of the lattice resides a group of qubits acted upon by a sequence
of quantum gates [10, 11, 12, 13], whose action is mediated by external control.
The quantum lattice gas’ evolution can be formally expressed as a special case
of Equation (1) where eiHτ/h̄ ≡ ŜĈ as follows

| Ψ(~x1, . . . , ~xV ; t+ τ)〉 = ŜĈ | Ψ(~x1, . . . , ~xV ; t)〉. (3)

In Equation (3), Ŝ is the streaming operator, which in matrix representation
is an orthogonal permutation matrix with components being either 0 or 1. Ŝ
is the “classical” lattice-gas streaming operator. However, in Equation (3), Ĉ
is not a classical operator. It is a unitary collision operator. In general, when
expressed in matrix form, Ĉ has complex components. (The quantum lattice gas
reduces to a deterministic classical lattice gas if Ĉ is a permutation matrix with
0 or 1 components. If and when Ĉ is stochastically switched between different
permutation matrices during the dynamical evolution, then the quantum lattice
gas reduces to a probabilistic classical lattice gas.) Finally, in Equation (3), I
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Table 1: Ket Symbols

Symbol Size of Manifold Description
|Ψ〉 2N Total system ket
|ψ〉 2B On-site ket
|q〉 2 Qubit, local state ket

have explicitly labeled the wave function’s dependence on all the coordinates of
the lattice to emphasize that the wave function is a lattice-based field quantity.

In general, the operator Ĉ can cause mixing of outgoing collisional config-
urations at each site of the lattice, locally entangling the qubit states within a
lattice cell of size `. The operator Ŝ then causes particles to move from one
site to the next, by exchanging qubit states between nearest neighboring sites.
Although the application of Ŝ causes the particles to move just as they would in
the streaming phase of a classical lattice gas, it also causes global superposition
and entanglement of all the qubit states, if local entanglement has already been
caused by Ĉ. In this way, quantum entanglements are spread throughout the
lattice by the action of Ŝ.

I will use the following convention for indices

1. Small roman letters (a, b, c) for the momentum directions on the lattice,
a ∈ {0, . . . , B − 1}.

2. Greek letters (α, β, γ) for specifying qubits, α ∈ {0, . . . , N − 1}.

3. Middle roman letters (i, j, k) for the spatial dimensions, i ∈ {1, . . . , D}.

2.1.2 System wave function

Let |Ψ〉, |ψ〉, and |q〉 denote the total system ket, on-site ket, and qubit ket,
repectively, as shown in Table 1. The quantum computer’s total wave function
can in general be expressed as a linear combination of tensor product states over
all the qubits

|Ψ(~x1, . . . , ~xV ; t)〉 =
∑

{q1,...,qN }
A(q1, . . . , qN )|q1〉 ⊗ · · · ⊗ |qN 〉. (4)

Here the summation indices qα are either zero or one, for 1 ≤ α ≤ N . Each
tensor product, |q1〉⊗· · ·⊗|qN 〉, is a basis state and |Ψ〉 is a pure classical state.
The number representation (4) is used in the numerical quantum simulation
presented in Section 3.3. I would like to establish a convention for representing
the system ket as a linear combination of tensor product states that are lattice-
site specific. Let |ψ〉 denote an on-site ket formed over the qubits at a single
site of the lattice

|ψ(~x, t)〉 =
∑

{q1,...,qB}
a(q1, . . . , qB)|q1(~x, t)〉 ⊗ · · · ⊗ |qB(~x, t)〉. (5)
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The system wave function (4) can in general also be expressed as a linear com-
bination of tensor product states over all the on-site kets

|Ψ(~x1, . . . , ~xV ; t)〉 =
∑

{ψ1,...,ψV }
A(ψ1, . . . , ψV )|ψ1〉 ⊗ · · · ⊗ |ψV 〉, (6)

where the shorthand notation |ψn〉 ≡ |ψ(~xn, t)〉 is used. Here the indices ψn
(for 1 ≤ n ≤ V ) in the sum represent the numbered basis states in the on-site
manifold B. So they are in the range 0 ≤ ψn ≤ 2B − 1. The coefficients A
account for all the global superpositions between lattice sites.

2.1.3 Unitary collision matrix

Collisions are implemented independently at each site of the lattice. Hence, all
sites can be collided in parallel, homogeneously across the entire system. The
collision operator Ĉ is therefore expressible in tensor product form since local
quantum superposition of outgoing on-site configurations occurs only within
each 2B-dimensional submanifold B. The 2N × 2N collision matrix Ĉ can be
written as the following tensor product

Ĉ =
V⊗
x=1

Û , (7)

where the on-site collision matrix Û is a 2B × 2B unitary matrix. It acts on the
on-site ket

| ψ′(~x, t)〉 = Û | ψ(~x, t)〉. (8)

The prime on the left hand side (LHS) of Equation (8) indicates that the ket
is an outgoing collisional state. Using the representation (6) of the system ket,
the post-collision system ket is

|Ψ′(~x1, . . . , ~xV ; t)〉 = Ĉ|Ψ(~x1, . . . , ~xV ; t)〉
=

∑
{ψ1,...,ψV }

A(ψ1, . . . , ψV )Û |ψ1〉 ⊗ · · · ⊗ Û |ψV 〉

=
∑

{ψ′
1,...,ψ

′
V

}
A′(ψ′

1, . . . , ψ
′
V )|ψ′

1〉 ⊗ · · · ⊗ |ψ′
V 〉. (9)

An equivalence class is defined as a set of basis states that correspond to
particle configurations with the same mass and momentum (and energy if that
is also defined in the lattice-gas model). The on-site unitary collision operator Û
acting on the B-submanifold itself is block diagonal over the equivalence classes.
Consider, for example, the quantum 1D3Px lattice gas (see Section 3.2.1 for a
detailed description of the 1D3Px lattice-gas model). There are two conserved
quantities for this one-dimensional system: the mass and the momentum along
the x-axis. Hence, there is only one equivalence class and it has two members, a
two-body head-on configuration and a configuration with a single rest particle.
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Both configurations have m = 2 and ~p = 0. The equivalence class is comprised
of the following on-site kets

|3〉 = |011〉
|4〉 = |100〉.

A general outgoing ket in this mass-momentum sector of the on-site submanifold
is a linear combination of these two

α|011〉 + β|100〉, (10)

where α and β are complex numbers. So the collision matrix Û for this one-
dimensional quantum lattice gas has one block. It has a 2 × 2 block for mixing
the head-on and rest particle configurations. In general, Û is block diagonal over
the equivalence classes [7]. Each block of Û , associated with an equivalence class
of size n, is a member of the U(n) unitary group.

2.2 Mesoscopic scale

2.2.1 Occupancy probability and the mass and momentum densities

The probability of occupancy at time t of the αth local state is denoted fα(t).
Let the αth local state be associated with a displacement vector êa at position
~x. Also, let n̂α denote the number operator for the αth local state. That
is, n̂α|Ψ(t)〉 has eigenvalue 1 or 0 corresponding to the αth local state being
occupied or empty at time t. A fundamental construct of the quantum lattice-
gas formalism is that the probability of occupancy, fα(t), is expressed in terms
the quantum mechanical density matrix %(t) = |Ψ(t)〉〈Ψ(t)| as the following
trace

fα(t) = fa(~x, t) ≡ Tr[%(t)n̂α]. (11)

In the literature on classical lattice gases and the lattice-Boltzmann equation,
fa(~x, t) is referred to as the single-particle distribution function, and it is de-
fined at the mesoscopic scale. For classical lattice gases, numerical estimates
of fa(~x, t) are obtained either by ensemble averaging over many independent
microscopic systems or by coarse-grain averaging over spacetime blocks with a
single microscopic system. For the quantum lattice gas, the fa(~x, t) is the expec-
tation value of the operator n̂α determined by repeated measurement of single
microscopic realizations or by direct measurement of an ensemble, as occurs in
nuclear magnetic resonance quantum computers [14, 15]. So the definition (11)
also defines fa(~x, t) at the mesoscopic scale.

Let α◦ denote the first local state within the group of local states at position
~x of the Bravais lattice. In addition, let α◦ correspond to the displacement
vector ê0. Next, suppose the local states are numbered in a systematic and well
ordered fashion so that each local state α = α◦ +a, for all a ∈ {0, 1, . . . , B− 1},
resides at position ~x. Note that with this numbering scheme, the directional
index a, associated with the αth local state, is found by the modulus operation
a = (α mod B). Then, the local mass density and the momentum density at ~x
and t can be expressed in terms of the occupancy probability, fa(~x, t), following

9



the convention used to define the mass and momentum densities in a classical
lattice gas

ρ(~x, t) = lim
`s→0

B∑
a=1

m fa(~x, t) = lim
`→0

α◦+B∑
α=α◦

mTr[%(t)n̂α] (12)

ρ(~x, t)vi(~x, t) = lim
`s→0

B∑
a=1

mc2eai fa(~x, t) = lim
`→0

α◦+B∑
α=α◦

mc2e(αmodB)iTr[%(t)n̂α].

(13)

The mass and momentum densities are considered “macroscopic” field quanti-
ties. They are only well defined in the continuum limit, where the primitive cell
size of the lattice approaches zero. However, for practical considerations, they
are approximated by high resolution grids with small but finite cell size.

To experimently determine the mass density or momentum density at a site
~x at time t in an actual quantum system, it is necessary to know the probability
of occupancy of all the local states at that site, fa(~x, t) for a = 1, . . . , B, accord-
ing to the definitions (12) and (13). The probability of occupancy, fa(~x, t),
of each local state depends on the polarization of the corresponding qubit
|qa(~x, t)〉 = αa(~x, t)|0〉 + βa(~x, t)|1〉. A Von Neuman measurement of the state
of this qubit will yield a value of either 0 or 1, with probability |αa(~x, t)|2 or
|βa(~x, t)|2 respectively, since the measurement causes a collapse of the quantum
wave function. A single value obtained by this stochastic measurement process
is not sufficient to determine fa(~x, t). Therefore, to obtain an estimate of the
expected equilibrium values of the mass and momentum densities, it is necessary
to either ensemble average over many realizations of the microscopic system or
coarse-grain average over space-time blocks within a single microscopic realiza-
tion. In this regard, the amount of effort needed to obtain estimates of the
densities is identical for the quantum system and classical lattice-gas sysytems.
A quantum computer that provides a direct means for measuring the expected
state of a qubit (such as is possible with an NMR quantum computer) would
be a more natural choice for implementing this quantum lattice-gas algorithm.

If measurements were made at each and every site, and at every time step
of the dynamics, then the quantum lattice-gas system is effectively “factorized”
in such a way that the quantum computer’s wave function is always collapsed
into a tensor product state. This type of factorized quantum lattice-gas simula-
tion, with continual and homogeneous measurement of the qubits, results in a
probabilistic classical lattice-gas simulation [8]. Yet, even in this case, the value
of the transport coefficients can differ from those of the classical lattice gas.

2.2.2 Microscopic transport equation

Let us consider two qubits |q〉 and |q′〉, which are located at neighboring sites ~x
and ~x′ = ~x+ `êa, respectively. I shall refer to the local states encoded by these
two neighboring qubits by their numerical labels α and α′, respectively. Next,
suppose these local states may be occupied by particles with momentum mcêa.
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Table 2: Two Neighboring Qubits

Qubits |q〉 |q′〉
Local State α α′

Position ~x ~x′ = ~x+ `êa
Momentum ~p = mcêa ~p′ = ~p

Following this construction, the action of the streaming operator Ŝ causes a
particle to move from site ~x to the neighboring site ~x′, hopping from local state
α with momentum ~p = mcêa to local state α′ with the same momentum ~p′ = ~p.
This labelling convention is summarized in Table 2. With this understanding,
we can write the identity

〈Ψ|n̂α|Ψ〉 = 〈Ψ|Ŝ†n̂α′ Ŝ|Ψ〉. (14)

This is a simple mathematical way of stating the following: If you make a
measurement of the occupancy of local state α before streaming, the result you
get must be the same as when you make a measurement of α′ after streaming.

The first step toward deriving a microscopic transport equation for the quan-
tum lattice gas, is to rewrite Equation (3) as

〈Ψ(t)|Ĉ†n̂αŜ† | Ψ(t+ τ)〉 = 〈Ψ(t)|Ĉ†n̂αĈ | Ψ(t)〉, (15)

which is done by multiplying through from the left by 〈Ψ(t)|Ĉ†n̂αŜ†, and then
using the identity Ŝ†Ŝ = 1. From the identity (14), we know that n̂αŜ† = Ŝ†n̂α′ .
Using this fact in the above equation allows us to write it as follows

〈Ψ(t)|Ĉ†Ŝ†n̂α′ | Ψ(t+ τ)〉 = 〈Ψ(t)|Ĉ†n̂αĈ | Ψ(t)〉. (16)

The “bra” vector on the LHS of this equation can be simplified using the adjoint
of Equation (3), which is 〈Ψ(t+τ)| = 〈Ψ(t)|Ĉ†Ŝ†, so that we obtain the following
result

〈Ψ(t+ τ)|n̂α′ |Ψ(t+ τ)〉 = 〈Ψ(t)|Ĉ†n̂αĈ|Ψ(t)〉. (17)

Using Equation (11) and referring to Table 2, Equation (17) expresses the prob-
ability of occupancy of local state α′ at site ~x + `sêa at time t + τ in terms of
a matrix element evaluated at the neighboring site ~x and at the earlier time t.
That is,

fa(~x+ `sêa, t+ τ) = 〈Ψ(t)|Ĉ†n̂αĈ|Ψ(t)〉. (18)

We may add fa(~x, t)−〈Ψ(t)|n̂α|Ψ(t)〉, which vanishes by definition, to the right
hand side (RHS) of Equation (18). Then, we recognize Equation (18) is a trans-
port equation for the particle occupancies. The result is a lattice-Boltzmann
equation for the quantum lattice-gas system

fa(~x+ `sêa, t+ τ) = fa(~x, t) + Ωmeso
a (Ψ), (19)
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where the collision term is expressed as the following matrix element:

Ωmeso
a (Ψ) ≡ 〈Ψ(t)|Ĉ†n̂αĈ − n̂α|Ψ(t)〉. (20)

An alternative derivation of Equation (20), carried out in the continuum
limit, is given in Appendix A. In practice, we will not be able to analytically
evaluate Equation (20) for a large quantum lattice-gas system with global en-
tanglement because of the exponential size of the |Ψ〉 ket. However, it is possible
to formally express the collision term Ωmeso

a when |Ψ〉 is represented as the linear
combination (6). This is done as follows:

Ωmeso
a =

∑
{ψ1′ ,...,ψV ′ }

∑
{ψ1,...,ψV }

A∗(ψ1′ , . . . , ψV ′)A(ψ1, . . . , ψV )〈ψ1′ |⊗· · ·⊗〈ψV ′ |Ĉ†n̂αĈ−n̂α|ψ1〉⊗· · ·⊗|ψV 〉.

(21)
Moreover, it is possible to express Ωmeso

a in terms of the on-site number operator
n̂a, which is represented by a 2B × 2B matrix. That is, n̂a acts only in the
submanifold B on the qubits at a single site. We write the N -qubit number op-
erator n̂α as a V -fold tensor product that has a single B-qubit number operator
n̂a located at the nth site index corresponding to the position vector ~xn as

n̂α = 1 ⊗ 1 ⊗ · · · ⊗ n̂a ⊗ · · · ⊗ 1, (22)

where 1 denotes the 2B×2B identity matrix. The collision operator Ĉ†n̂αĈ−n̂α
can then be written

1 ⊗ 1 ⊗ · · · ⊗
(
Û†n̂aÛ − n̂a

)
⊗ · · · ⊗ 1 =

V⊗
x=1

Ω̂a, (23)

where

Ω̂a ≡
{
Û†n̂aÛ − n̂a, x = xn

1, otherwise. (24)

Using Equations (7), (22), and the orthonormality of the on-site kets 〈ψn′ |ψn〉 =
δn′n, Equation (21) reduces to a local matrix element evaluated at single site
~xn′ = ~xn = ~x as

Ωmeso
a =

∑
ψn′

∑
{ψ1,...,ψV }

A∗(ψ1, . . . , ψn−1, ψn′ , ψn+1, . . . , ψV )A(ψ1, . . . , ψn, . . . , ψV )〈ψn′ |Û†n̂aÛ−n̂a|ψn〉.

(25)
Let us make the following definition:

R(ψn′ , ψn) ≡
∑

{ψ1,...,ψn−1,ψn+1,...,ψV }
A∗(ψ1, . . . , ψn−1, ψn′ , ψn+1, . . . , ψV )A(ψ1, . . . , ψn, . . . , ψV ).

(26)
The quantity R(ψn′ , ψn) represents the superposition of the on-site basis states
at site ~x with all the other on-site basis states in the system at the other sites.
With this definition, Equation (25) can be written in a simpler way,

Ωmeso
a =

∑
ψn′

∑
ψn

R(ψn′ , ψn)〈ψn′ |Û†n̂aÛ − n̂a|ψn〉. (27)

12



If each on-site state is not entangled or superposed with any other on-site state,
then R can be written in factorized form, R(ψn′ , ψn) = C(ψn′)C(ψn). In this
case, Equation (27) is simplified

Ωmeso
a = 〈ψ|Û†n̂aÛ − n̂a|ψ〉, (28)

where the coefficients C(ψn) specify any local superposition and entanglement

|ψ〉 ≡
∑
ψn

C(ψn)|ψn〉. (29)

Then using Equation (28), the lattice Boltzmann equation for the quantum
lattice-gas system becomes a local equation that can be easily simulated on a
classical computer [7, 8].

2.2.3 The approach to steady-state equilibrium

The system is said to be in steady-state equilibrium (which may also be called
thermodynamic equilibrium) when the system ket |Ψeq(t)〉 is an eigenvector, with
unity eigenvalue, of the collision operator Ĉ,

Ĉ|Ψeq〉 ≡ |Ψeq〉. (30)

The value of the probability of occupancy (11) is then determined from |Ψeq〉 as

f eq
a (~x, t) = 〈Ψeq(t)|n̂α|Ψeq(t)〉. (31)

Notice by the definition (30) for steady-state equilibrium, the collision term (20)
in the lattice Boltzmann equation vanishes,

Ωmeso
a (|Ψeq〉) = 0. (32)

Therefore, at steady-state equilibrium, the occupancy probabilities are unchang-
ing over time. That is, |Ψeq〉 is the ground state of the system. The distribution
along the momentum directions of the particle occupancies are uniform, so the
local configurations are perfectly symmetric, and Ωmeso

a cannot cause any further
changes.

3 Numerical Treatment

3.1 Methodology

3.1.1 Universal two-qubit gate

In this section, I write a two-qubit universal gate in terms of the creation and
annihilation operators of the second quantized formulation of quantum mechan-
ics. A classic text on second quantization is by Fetter and Walecka [16]. For our
purposes, the two-qubit gate is a member of the special unitary group SU(2); I
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neglect the overall phase factor because this does not affect the quantum lattice-
gas dynamics. If Û is a member of SU(2), it can be parametrized using three
real numbers ξ, ζ, and θ as follows:

Û ≡
(

eiξ cos θ −eiζ sin θ
−e−iζ sin θ −e−iξ cos θ

)
. (33)

Let â†
α and âα denote the creation and annihilation operators for αth spin of

a fermionic quantum spin system. Then the spin-1
2 creation and annihilation

operators satisfy the anti-commutation relations

{âα, â†
β} = δαβ (34)

{âα, âβ} = 0

{â†
α, â

†
β} = 0.

The spin number operator n̂i ≡ â†
αâα has eigenvalues of 1 and 0 in the number

representation when acting on a pure state, corresponding to the ith spin being
up sz = 1

2 and down sz = − 1
2 , respectively.

Consider a fermionic spin system with a total of N spins whose system ket is
denoted by |Ψ〉. Acting on this system ket with a unitary operator, we would like
to entangle the two spin states, the states of the αth and βth spins, according
to the components of the special unitary matrix (33). Let Υαβ denote a square
2N × 2N matrix that does this. I define Υαβ in terms of the multispin creation
and annihilation operators as follows:

Υαβ ≡ 1+e−iζ sin θ â†
β âα+eiζ sin θ â†

αâβ−(1+eiξ cos θ) n̂α−(1−e−iξ cos θ) n̂β−2i sin ξ cos θ n̂αn̂β
(35)

for α 6= β. Its matrix representation for a two-qubit system is

Υ =




1 0 0 0
0 eiξ cos θ −eiζ sin θ 0
0 −e−iζ sin θ −e−iξ cos θ 0
0 0 0 −1


 . (36)

In Appendix B, I demonstrate why Υαβ is manifestly unitary and an appropriate
formulation of a universal quantum gate.

In the special case when θ = π/2, ξ = 0, and ζ = 0, then Υαβ reduces an
interchange operator

χαβ ≡ 1 + â†
β âα + â†

αâβ − n̂α − n̂β , (37)

which is a NOT gate (see Appendix B).

3.1.2 Symbolic mathematics method

It is possible to simulate the exact quantum mechanical evolution of a quantum
spin system using computational symbolic mathematics3. To test the quantum

3 I developed this symbolic method in 1991 at Brandeis University, see
http://xyz.plh.af.mil/Papers/pdf/ae91.pdf.
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lattice-gas method, I implemented the algorithm using version 4 of Mathe-
matica [17]. Letting 1 and 0 represent spin up and spin down, respectively, the
first step is to define a set of rules that encode the Fermionic anticommutation
relations (34)

a†[0] = 1 (38)
a†[1] = ℵ (39)
a†[ℵ] = ℵ (40)
a[0] = ℵ (41)
a[1] = 0 (42)
a[ℵ] = ℵ, (43)

where ℵ is a symbol used to denote what I call the null state that accommodates
Pauli exclusion and destruction on the vacuum. That is, the symbols a† and a
represent the single-spin (or single qubit) creation and annihilation operators,
respectively.

Next, all the basis states, in the number representation, are encoded by the
symbol Ψ[s], where 0 ≤ s ≤ 2N − 1, for a system with N spins. That is, the
states are binary encoded and labeled by N -bit integers. The state Ψ[0] is called
the vacuum state. The symbolic rules embodying the multiple-spin creation and
annihilation operators are defined in terms of the single-spin rules

a†[α,Ψ[s]] =
{

(−1)Sαa†[(s ∧ 2α) ⇒ α]
0, if s = ℵ, (44)

a[α,Ψ[s]] =
{

(−1)Sαa[(s ∧ 2α) ⇒ α]
0, if s = ℵ, (45)

where 0 ≤ α ≤ N − 1 and where the factor (−1)Sα appearing in Equa-
tions (44) and (45) accounts for a phase change of π-radians induced by com-
muting spins. In the number representation each basis state is denoted by a ket
|n1n2 · · ·nα · · ·nN 〉, where each n is either 1 (particle present) or 0 (no particle
present). The phase factor Sα is defined by

Sα = n1 + n2 + · · · + nα−1. (46)

The bitwise AND operation is denoted here by the symbol ∧. The symbol ⇒
denotes a bitwise barrel roll to the right. That is, “s ⇒ j” means shift the integer
s to the right by j digits. Hence, the result of the operation “(s ∧ 2α) ⇒ α”
is either 1 or 0, depending on whether or not a particle occupies the αth-local
state. Notice that the symbols a† and a are overloaded, so that when they are
used with a single argument, that argument is interpreted as a spin value. If
a† and a are used with two arguments, the first argument is interpreted as a
spin-index and the second argument is interpreted as a ket.

Notice that these symbolic definitions of the multiple-spin creation and an-
nihilation operators use the basis-state symbol Ψ on the LHS of the rules, but Ψ
is not used at all on the RHS in the definition of the rules. Hence, it may seem
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that the use of the symbol Ψ is superfluous here. However, this is not the case,
because its use allows me to define the action of the creation and annihilation
operators on a superposition of basis states in a recursive fashion:

a†[α,AΨ[s] +B] = A a†[α,Ψ[s]] + a†[α,B], (47)
a[α,AΨ[s] +B] = A a[α,Ψ[s]] + a[α,B]. (48)

Using this convention, it is possible, for example, to destroy a spin in local state
α of a superposed state, say Ψ[s1] + Ψ[s2], by directly supplying this state as
the second argument. Then, Equation (45) correctly expands out to

a[α,Ψ[s1] + Ψ[s2]] = a[α,Ψ[s1]] + a[α,Ψ[s2]]. (49)

If the special symbol, Ψ, were not used, then one would get the wrong answer

a[α, s1 + s2] = a[α, s3], (50)

where s3 is the numerical sum of s1 and s2. Of course, it is possible to use
a special symbol in place of the plus sign to represent superimposed states. I
have chosen not to do this. With the Ψ symbol convention, Mathematica can
by default manipulate expressions involving the superposition of an arbitrary
number of states and represent them in memory in a compact fashion. After the
action of the collision operator (which is mathematically defined earlier in this
paper and symbolically defined immediately below) on to a superposed state,
the resulting new state in general has identical basis states that are repeated in
the superposition, where each occurrence has a different amplitude. Using the
Ψ symbol convention, all these types of replications are automatically reduced
down to the one term, since Mathematica automatically adds coefficients of
common terms.

Next, the multiple-spin number operator is defined as a composition of the
multiple-spin creation and annihilation rules

n[α,Ψ] = a†[α, a[α,Ψ]]. (51)

With rules (44), (45), and (51), for the creation, annihilation, and number oper-
ators, it is then straightforward to implement the universal gate, Equation (35),
by composition

U [s1, s2,Ψ] = Ψ − Ca†[s2, a[s1,Ψ]] −Ba†[s1, a[s2,Ψ]] (52)
+ (A− 1)n[s1a,Ψ] + (D − 1)n[s2,Ψ] − (A+D)n[s1, n[s2,Ψ]],

where the c numbers A, B, C, and D are components of an SU(2) matrix(
A B
C D

)
.

In the case of the quantum 1D3Px model, the collision operator mixes the on-
site kets, |011〉 and |100〉. Three qubit states are affected. I use a modified rule
to directly handle this situation. The on-site collision operator for the 1D3Px
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quantum lattice gas is implemented by the following composition of universal
gates:

U [s1a, s1b, s2,Ψ] = Ψ − Ca†[s2, a[s1a, a[s1b,Ψ]]] −Ba†[s1a, a†[s1b, a[s2,Ψ]]] (53)
− (1 −A)n[s1a, n[s1b,Ψ]] − (1 −D)n[s2,Ψ] + (1 −D)n[s1a, n[s2,Ψ]]
+ (1 −D)n[s2, n[s1b,Ψ]] − (A−D)n[s1a, n[s1b, n[s2,Ψ]]].

The lattice-gas collision operator according to Equation (7) for the V = 7`
system is thus defined as a seven-fold composition

C[Ψ] = U [20, 21, 19, U [17, 18, 16, U [14, 15, 13, U [11, 12, 10, U [8, 9, 7, U [5, 6, 4, U [2, 3, 1,Ψ]]]]]]].
(54)

This is actually handled recursively in the symbolic implementation, so C works
regardless of the size of the system.

The streaming operator for the quantum lattice gas is implemented using
two rules, one to stream the right moving particles, denoted S+, and the other
to stream the left moving particles, denoted S−. Note that the right moving par-
ticles occupy local states 2,5,8,11,14,17,20 and the left moving particles occupy
local states 3,6,9,12,15,18,21. S+ and S− are defined in terms of a sevenfold
composition of interchange operators (37)

S+[Ψ] = χ[2, 5, χ[5, 8, χ[8, 11, χ[11, 14, χ[14, 17, χ[17, 20,Ψ]]]]]] (55)
S−[Ψ] = χ[21, 18, χ[18, 15, χ[15, 12, χ[12, 9, χ[9, 6, χ[6, 3,Ψ]]]]]]. (56)

Again, these are handled recursively in the symbolic implementation, so the
streaming operators work regardless of the size of the system. A global shift of
particles is done by successive local interchanges of particles occupancies [18].

Finally, the evolution rule, denoted E, for the entire quantum system is the
composition of the last three rules

E[Ψ] = C[S+[S−[Ψ]]]. (57)

Any other compound rules that may be needed in a simulation can be defined in
a similar fashion by composing predefined simpler rules. Therefore, beginning
with a superpositon of basis states Φ(t) =

∑
s φsΨ[s] the dynamical evolution

equation corresponding to Equation (3) is

Φ(t+ τ) = E[Φ(t)], (58)

where the result is a new superposition over a different set of basis states Φ(t+
τ) =

∑
s′ φs′Ψ[s′].

3.2 The 1D3Px model

3.2.1 Classical version

Let us consider a simple lattice-gas model as a concrete example called the
1D3Px lattice-gas model, in this paper. This model was first studied by Qian
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in 1990 [19] and is referred to as Model I in his thesis. The lattice gas is one
dimensional and has three bits per site, a rest particle with mass two and speed
±1 particles with mass one. The mass and momentum at a lattice site is

m = 2n0 + n1 + n2 and px = n1 − n2. (59)

m = 2
head-on                 rest

Figure 1: Head-on collision in the 1D3Px lattice-gas model. The single equivalence class
has m = 2 and px = 0.

There are two local configurations both with m = 2 and px = 0: (1)
{n0, n1, n2} = {1, 0, 0} and (2) {n0, n1, n2} = {0, 1, 1}. These two configura-
tions are members of the only collision set (which is called an equivalence class).
An equivalence class has two or more members. Figure 1 illustrates the equiv-
alence class of the 1D3Px model. Its two elements are the configuration of two
head-on particles {011} and the configuration with a single rest particle {100}.

Because the total number of particles and the total momentum must be
conserved, the collision part of the dynamics can only permute the local con-
figurations. The collision equation, which is applied homogeneously across the
lattice, can be expressed as in terms of a mapping function U as follows:

s′ = U(s), (60)

where U maps 2B configurations to 2B new configurations. For the simple
1D3Px lattice, U is

U({011}) = {100}
U({100}) = {011}.

If a configuration s is not a member of an equivalence class, then U(s) = s. In
other words, if the incoming state is not a member of an equivalence class, then
the outgoing state is set equal to the incoming state. To speed up a lattice-gas
simulation, the mapping function U may be precomputed before the simulation
and accessed in lookup table fashion during the simulation.

In a computer implementation, it is convenient to use two arrays to simulta-
neously store the states s and s′. Therefore, in Equation (60), data in the array
that stores the “incoming” state s is transformed by the action of the lookup
table U (which is applied homogeneously over the entire array) and the output
is written into the next array to store the new “outgoing” state s′.

It is conventional to write the collision rule in terms of the occupation vari-
ables na = 1 or 0, which are Boolean values. The collision rule, expressed for
an individual local state, is written

n′
a(~x, t) = na(~x, t) + Ωa(n∗), (61)
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where the collision term Ωa(n∗) = ±1 or 0. Writing Ωa(n∗) with an asterisk
subscript on n∗ denotes that the collision term for the ath local state depends
on all the on-site local states. It is conventional to write the streaming rule in
terms of na also,

na(~x+ `êa, t+ τ) = n′
a(~x, t). (62)

Combining Equations (61) and (62), the microscopic transport equation is there-
fore

na(~x+ `êa, t+ τ) = na(~x, t) + Ωa(n∗). (63)

For the 1D3Px model, the lattice vectors are ê0 = ~0, ê1 = x̂, and ê2 = −x̂ and
the collision term is specified by the single function

Ω = n1 n2 (1 − n0) − n0 (1 − n1)(1 − n2), (64)

where Ω0 = Ω, and Ω1,2 = −Ω. Then explicitly for the 1D3Px model, the
microscopic transport equation (63) is

n0(x, t+ τ) = n0(x, t) + Ω(x, t) (65)
n1,2(x± `, t+ τ) = n1,2(x, t) − Ω(x, t).

A lattice-Boltzmann equation describes the dynamics of the 1D3Px lattice-gas
system at the mesoscopic scale. The mesoscopic average of the occupation
variable na(~x, t) is the probability of occupancy

fa(~x, t) ≡ 〈na(~x, t)〉. (66)

Here, the angled brackets around a microscopic quantity denote its mesoscopic
expectation value obtained by ensemble averaging. The kinetic transport equa-
tions are

f0(x, t+ τ) = f0(x, t) + 〈Ω(x, t)〉 (67)
f1,2(x± `, t+ τ) = f1,2(x, t) − 〈Ω(x, t)〉.

To carry out a classical lattice-gas simulation at the mesoscopic scale, we can
approximate Ωmeso(x, t) ≡ 〈Ω(x, t)〉 by a mean-field collision term, denoted
Ωmf(x, t), that neglect particle-particle correlations:

〈Ω(x, t)〉 ' Ωmf(x, t) = f1 f2 (1 − f0) − f0 (1 − f1)(1 − f2). (68)

A statement of detailed balance can be written by setting the mean-field value
of the collision term (68) to zero at equilibrium

〈Ω〉 ' Ωmf(f eq
∗ ) = 0. (69)

Therefore, the probability of occupancies satisfies the equation

f eq
0 =

f eq
1 f

eq
2

f eq
1 f

eq
2 + (1 − f eq

1 )(1 − f eq
2 )

. (70)
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This equation, along with equations for the mass and momentum densities

ρ◦ = 2f eq
0 + f eq

1 + f eq
2 and ux◦ = f eq

1 − f eq
2 , (71)

gives us a nonlinear system of three equations in five unknowns, f eq
0 , f eq

1 , f eq
2 ,

ρ◦, and ux◦. Hence, it is possible to analytically solve for the occupation prob-
abilities, f eq

0 , f eq
1 , and f eq

2 in terms of ρ◦ and ux◦. When the system is at rest
at equilibrium, px = 0, then f eq

1 = f eq
2 = d and the probability of occupancy for

the rest particle state is

f eq
0 =

d2

1 − 2d+ 2d2 . (72)

Using Equation (68), the Jacobian of the collision Jab ≡ ∂Ωmf
a

∂fb

∣∣∣
feq

is

J =




−1 + 2d− 2d2 (1−d)d
1−2d+2d2

(1−d)d
1−2d+2d2

1 − 2d+ 2d2 (d−1)d
1−2d+2d2

(d−1)d
1−2d+2d2

1 − 2d+ 2d2 (d−1)d
1−2d+2d2

(d−1)d
1−2d+2d2


 . (73)

The eigenvectors of J are

|1〉 = (2, 1, 1) (74)
|2〉 = (0, 1,−1) (75)

|3〉 =
(

(1 − 2d+ 2d2)2

d(d− 1)
, 1, 1

)
. (76)

The eigenvectors |1〉 and |2〉, corresponding to mass and momentum, span a
two-dimensional hydrodynamic subspace. The remaining eigenvector |3〉 is a
kinetic eigenvector, which in this case is density dependent. The eigenvalues of
J are

λ1 = 0 (77)
λ2 = 0 (78)

λ3 =
1 − 2d+ 6d2 − 8d3 + 4d4

−1 + 2d− 2d2 . (79)

Now using the lattice vectors, ê0 = 0, ê1 = 1, and ê2 = −1, and the ex-
pression for J given in Equation (73), we set the secular determinant of the
linearized Boltzmann equation equal to zero[(

ei(`sêa·~k+ωτ) − 1
)
δab − Jab

]
= 0. (80)

This allows us to solve for the dispersion relations for the lattice-gas system
obeying what is called generalized hydrodynamics. Equation (80) is a result
from the generalized hydrodynamics of classical lattice-gas systems previously
worked out by Das, Bussemaker, and Ernst [20] and Grosfils, Boon, Brito, and
Ernst [21]. Taking ` = τ = 1, we get the following dispersion relation:

(1 − 2d+ 2d2)e3ω − 2[d− 3d2 + 4d3 − 2d4 + (1 − 3d+ 3d2) cos k]e2ω

+(1 − 2d)2[1 + 2d(d− 1) cos k]eω + 4d2(d− 1)2 = 0. (81)
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This is a cubic equation in eω, and it is analytically solvable. The only hy-
drodynamic mode is a damped sound wave ω(~k) = ±csk + iΓ(ρ)k2. Real and
imaginary parts of the dispersion relations for the 1D3Px lattice-gas model are
shown respectively in Figure 2 and Figure 3. The real part of the dispersion
relations indicates a sound mode (Re(ω) → ±csk as k → 0). The imaginary
part of the dispersion relation for the hydrodynamic mode is parabolic for small
wavenumbers, indicating viscous damping of the sound mode (Im(ω) → Γk2 as
k → 0). The sound damping constant, Γ, approaches zero as the background
mass density approaches zero [19]. That is, low-mass density waves can oscillate
without viscous damping.
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Figure 2: The real part of the dispersion relation for the mesoscopic 1D3Px lattice gas in the
long wavelength limit and mean-field limit at a reduced background density of d = 0.214286.

The real part of the dispersion relation for the sound mode for the 1D3Px
lattice-gas model set with a background density of d = 6

4V , with V = 7`, is
shown in Figure 2. The real part of the dispersion relation indicates a sound
mode (Re(ω) → ±csk as k → 0 where cs = 0.74 `τ ). The data points, plotted as
black circles, are solutions to the linearized Boltzmann equation in the mean-
field limit. The solid red curves, with slope of ±cs, are numerical linear fits to
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the data. The imaginary part of the dispersion relation for the sound mode for
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Figure 3: The imaginary part of the dispersion relation for the mesoscopic 1D3Px lattice
gas in the long wavelength limit and mean-field limit at a reduced background density of
d = 0.214286.

the 1D3Px lattice-gas model is shown in Figure 3. The imaginary part of the
dispersion relation indicates sound damping (Im(ω) → iΓk2 as k → 0 where
Γ = 0.08 `

2

τ . The solid red parabola is a numerical fit to the data in the region
of small k < 1. The calculations shown in Figures 2 and 3 were done with a
mass density filling fraction of d◦ = 6

4V = 0.214, where a small system size of
V = 7` is used. In this case, k = 2π

V = 0.898.

3.2.2 Quantum version

 
 
 
 

 

2  3  Dimensions One-Dimensional Lattice Network

Single Lattice Site 

y0  |000>
y1  |001>
y2  |010>
y3  |011>
y4  |100>
y5  |110>
y6  |101>
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Figure 4: A one-dimensional array of quantum computers with three qubits per node.

A hypothetical lattice-based quantum computer (with computational sites
depicted as circles) arranged as a one-dimensional lattice is shown in Figure 4.
At each lattice site resides B = 3 qubits in 1D in this example with V = 7` sites.
The on-site ket | ψ〉 resides in a 2B-dimensional submanifold. The large circle
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on the right represents an expanded view of this on-site submanifold, which is
denoted by B. The basis states of B are shown in the number representation.
Each site is coupled to its nearest neighboring sites by a mechanism allowing for
the exchange of qubits. If the exchange mechanism retains all quantum entan-
glement (and thereby spreading it through the quantum computer), then the
quantum computer is considered fully coherent. If the exchange mechanism is
classical (destroying quantum entanglement by collapsing the wave function),
then it is called a type-II quantum computer (which is simply a large array
of small quantum computers interconnected by a classical communication net-
work).

The associated 1D3Px quantum lattice-gas model has three qubits per site,
|qa〉 = αa|0〉+βa|1〉 for a = 0, 1, 2. The zeroth qubit represents a rest particle of
mass two and the first and second qubits represent moving particles of speeds
±1, translating in the right and left going directions, respectively.

The m = 2, px = 0 equivalence class is spanned by the states |100〉 and |011〉.
Collisional entanglement occurs only between these two states, ξ|100〉 +χ|011〉,
where ξ and χ are c-numbers. The on-site ket, |ψ〉 = |q0〉 ⊗ |q1〉⊗ | q2〉, is

| ψ〉 = β0β1β2|111〉 + β0β1α2|110〉 + β0α1β2|101〉 + β0α1α2|100〉 +
α0β1β2|011〉 + α0β1α2|010〉 + α0α1β2|001〉 + α0α1α2|000〉. (82)

The outgoing on-site ket | ψ′〉 = Û | ψ〉 is




β0β1β2
β0β1α2
β0α1β2

aβ0α1α2 + bα0β1β2
cα0β1β2 + dα0β1β2

α0β1α2
α0α1β2
α0α1α2




=




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 a b 0 0 0
0 0 0 c d 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1







β0β1β2
β0β1α2
β0α1β2
β0α1α2
α0β1β2
α0β1α2
α0α1β2
α0α1α2



, (83)

where the local collision operator is the 8×8 matrix with one 2×2 block, which
is a member of the U(2) unitary group satisfying

| a |2 + | b |2=| c |2 + | d |2 = 1 (84)
ac∗ + bd∗ = a∗c+ b∗d = 0 (85)

| a |2 + | c |2=| b |2 + | d |2 = 1 (86)
ab∗ + cd∗ = a∗b+ c∗d = 0. (87)

The quantum 1D3Px lattice gas obeys detailed balance because the collision
operator Û is a unitary matrix [8].

The mass and momentum densities for the quantum lattice-gas system are

ρ = 2〈q0 | n̂ | q0〉 + 〈q1 | n̂ | q1〉 + 〈q2 | n̂ | q2〉 (88)
ux = 〈q1 | n̂ | q1〉 − 〈q2 | n̂ | q2〉. (89)
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Viscous dissipation does not necessarily occur in quantum lattice-gas sys-
tems. Global entanglement of the wave function significantly complicates the
dispersion relations, which are determined by the following equation

Det

[
(e`ea·~k+ωτ − 1)δab − ∂〈Ψeq|(Û†n̂aÛ − n̂a) ⊗ 1 ⊗ · · · ⊗ 1|Ψeq〉

∂fb

]
= 0, (90)

where Ψeq is the steady-state equilibrium wavefuntion, which is the ground
state of the system. I have explicitly written the collision operator, as in Equa-
tion (23), in spatially separated form. In general, as described in Section 2.2.1,
α = α◦ + a, where α◦ is an index that refers to the first local state at some
particular site in the system. According to the ordered numbering scheme used,
α◦ = 0 at the first site of the system, α◦ = B at the second site, α◦ = 2B at the
next site, and so on. Without loss of generality, in Equation (90) we can assume
we are working at the first site of the system where n̂α = n̂a ⊗ 1 ⊗ · · · ⊗ 1. In
the classical case, Ĉ is a permutation matrix and the steady-state equilibrium
wave function is a tensor product over the on-site kets

|Ψeq〉 =
V⊗
x=1

|ψeq〉. (91)

In turn, the on-site kets are formed by a tensor product over the individual
qubits

|ψeq〉 =
B⊗
a=1

(√
f eq
a |1〉 +

√
1 − f eq

a |0〉
)
. (92)

Finally, f eq
1,2 = d and f eq

0 = d2

d2+(1−d)2 according to Equation (72). The Jacobian
of the collision matrix element appearing in Equation (90) is computable using
Equations (91) and (92) (see Equation (73) in Section 3.2.1). In the quantum
mechanical case, |Ψeq〉 is not expressible as a tensor product state, and hence the
Jacobian of the collision matrix element appearing in Equation (90) becomes
complicated.

3.3 Simulations

3.3.1 Classical Simulation

A time history of the mass density wave for a small system with V = 7` sites is
shown in Figure 5. The exponential envelope over plotted in red is analytically
determined by an analysis of the linearized lattice Boltzmann equation in the
mean-field limit (see Figure 3). The predicted sound damping constant Γ =
0.08 `

2

τ is in excellent agreement with the simulation data.
Plotted in Figure 6 is damping time constants of mass density waves in

the classical 1D3Px lattice gas for different system sizes from V = 2` up to
V = 256`. The log-log plot shows the power-law behavior, known as diffusive
ordering, typical of a lattice-gas system in the viscous regime. The power law
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Figure 5: Damping of a mass density wave for a system with V − 7 sites in the classical
1D3Px model simulated using a mesoscopic Boltzmann equation with the collision term ex-
pressed in the mean-field approximation. The background density is d◦ = 6

4V
= 0.214. The

ordinate is the absolute value of the amplitude of the mass-density wave divided by the peak
amplitude of the initial perturbation.
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Figure 6: Diffusive ordering in the classical 1D3Px model computing at the mesoscopic
scale using the mean-field approximation.
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in this case is T = 0.44V 2, which is parabolic. Each circle is determined from a
mesoscopic scale simulation that was initialized with a sinusoidal perturbation
of δρ = 0.04m` from a uniform background mass density at half-filling, ρ =
2m` . The damping constant, Γ = `2

T , is determined from the envelope of the
resulting standing wave e− t

T cosωt (see Figure 5). The mean-field estimates of
the damping time constant are the circles. The solid blue line is a linear best
fit to these estimates. The estimated damping constant deviates only slightly
from power-law behavior at the smallest system sizes. This is an example of
“fluidlike” behavior occurring in systems far below the continuum limit. The
inset plot is a linear plot of the data for V ≤ 16 and the solid-blue parabola is
the same diffusive-ordering power-law in the larger log-log plot.

3.3.2 Quantum simulation
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Figure 7: Mass and momentum sectors of the 1D3Px lattice-gas model with V = 7` sites
plotted versus the number of states per sector.

I have tested the quantum lattice-gas formalism described in this paper by
carrying out exact numerical simulations of a 1D3Px model, which is described
in detail in Section 3.2.1. In this section, I present results obtained from the
numerical simulation of a small system with V = 7` sites. I have used the
symbolic numerical technique described above in Section 3.1.2. The principal
finding is that the quantum lattice gas does not display viscous damping.

Since the evolution operator conserves mass and momentum, we can divide
the Hilbert space into disjoint mass-momentum sectors. When the lattice-gas
evolution operator maps a particular state residing in a mass-momentum sector
to a new state, the new state must also reside in that same mass-momentum
sector. The Hilbert space for the V = 7` system has over two million dimen-
sions. The number of states within each mass-momentum sector of the V = 7`
system are graphically illustrated in Figure 7. The density plot on the left side
of Figure 7 clearly shows that the allowable mass-momentum sectors are all
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contained within a hexagonal boundary. The distribution for the number of
available states within a mass-momentum sector is reflection symmetric about
half-filling (m = 14) and about zero momentum (px = 0).
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Figure 8: Initial mass density sinusoidal perturbation in the quantum 1D3Px lattice gas for
a small system size of V = 7` with periodic boundary conditions. The total number of qubits
in the simulation is BV = 21. The simulation is initialized with a sinusoidal perturbation in
the m = 6, px = 0 mass-momentum sector with a peak amplitude of δρ ' 0.4 from a uniform
background mass density at ρ◦ = 6

28 = 0.857. So the fractional mass density variation is
initially one part in two, which is an extremely large-scale fluctuation. The wavelength equals
the system size. The initial mass density field is not exactly sinusoidal, because aside from
the limitation of only V = 7` sites, it is produced by the interference of all 5376 in the m = 6
and px = 0 sector. An algorithm using Lagrangian multipliers maximizes the entropy of the
resulting wave function and chooses all the amplitudes of the initial state.

I have simulated the V = 7` system (with BV = 21 globally entangled
qubits) in the mass m = 6 and momentum px = 0 sector. In this mass-
momentum sector, there are 5376 basis states. The goal of the numerical test
was to measure the sound damping constant in the quantum 1D3Px model and
compare the result to the mean-field estimate. The system was initialized with
a sinusoidal perturbation of the mass density field, with a wavelength equaling
the grid size of the periodic system (λ = V ). All the states in the m = 6, px = 0
sector were superposed by choosing amplitudes in such a fashion that the en-
tropy of the initial state is maximized, subject to the independent constraints
of conservation of probability, mass, and momentum. The entropy function was
taken to be

S = −
∑
α

[|cα|2 ln |cα|2 + (1 − |cα|2) ln(1 − |cα|2)] , (93)

where cα is the amplitude of the ket |α〉 in the m = 6, px = 0 mass-momentum
sector. Given a particular desired profile of the mass density field, it is more
difficult to construct an initial state that completely resides in only one sector
than to use an initial state that spans the entire Hilbert space. However, it is
computationally advantageous to limit the simulation to a single sector of the
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Hilbert space, so that memory allocation in the computer is kept at a manage-
able level. Figure 8 shows a maximized entropy state used in the test simulation
presented in this section.

The data from the simulation run is presented in several ways. First, the
peak amplitude of the mass density wave is recorded after every time step. The
amplitude is normalized in such a fashion that at time t = 0 it has unity value.
In a viscous fluid with sound damping, the peak amplitude would oscillate and
decay exponentially in time by the factor, e−Γt/`2 cos 2πcst

` , where cs is the sound
speed and Γ is a positive definite damping constant as is shown in Figure 5.
However, for the quantum 1D3Px model, the numerical result indicates Γ may
be zero for certain collision operators.
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Figure 9: Oscillations of a mass density wave in the quantum 1D3Px lattice gas for a
system size of V = 7` in the m = 6 and px = 0mc sector. The ordinate is the absolute
value of the amplitude of the mass-density wave divided by the peak amplitude of the initial
perturbation.

A time series history of the square of the peak amplitude is plotted in Fig-
ure 9, using the same format as Figure 5 for the classical 1D3Px model with
the same grid size and initial condition. In the quantum simulation, the peak
amplitude does not decay in time, unlike the results obtained in the classical
lattice-Boltzmann simulations shown in Figure 5. Initially, within the first cou-
ple dozen time steps, the peak amplitude appears to decay, very much like it
does in a classical microscopic simulation or lattice-Boltzmann simulation of
the 1D3Px model. However, the amplitude does not continue to damp in subse-
quent time steps. The peak amplitude rises and falls. No damping is observed
even after a thousand time steps. An expanded view of the first 250 time steps
is shown underneath. Since the algorithm is unitary (and hence the collisions
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obey the principle of detailed balance) the dynamics is reversible.
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Figure 10: Normalized peak (absolute value of the amplitude of the mass-density wave
divided by the peak amplitude of the initial perturbation) versus the first derivative of the
normalized peak of oscillations of a mass density wave in the quantum 1D3Px lattice gas
for a system size of V = 7` in the m = 6 and px = 0 sector. Over plotted in blue are
maximum speed curves corresponding the individual particle velocity, c = ± `

τ
. As expected,

all the data is contained within this “cone.” In addition, over plotted in red are sound-speed
curves corresponding to cs = ±0.74 `

τ
, which is analytically determined from a mean-field

approximation of the system using the linearized lattice-Boltzmann equation. Most of the
data is clustered around the sound-speed curves, and additional data points scattered within
the “sound-speed cone” indicates randomness in the oscillation of the mass density wave.

In Figure 10, this data is presented in scatter plot fashion, where the square
of the normalized peak amplitude is plotted versus its first order time derivative.
I used the following difference formula to approximate the time derivative:

∂ρ2(x, t)
∂t

' ρ2(x, t− τ) − ρ2(x, t+ τ)
2τ

. (94)

The data appear randomly scattered, but is clustered along a “cone” corre-
sponding to the speed of sound in the 1D3Px model, which the Boltzmann
analysis of Section 3.2.1 predicts to be cs = 0.74 `τ .

To obtain a more accurate estimate of the sound speed in the quantum
1D3Px simulation, a Fourier transform of the time series history of the mass
density at a single site of the system was computed and the power spectrum
ρ∗
ω(x)ρω(x) plotted (see the bottom plot of Figure 11). The top plot shows the

time series collected by measuring the fluctuation of the mass density field of
the V = 7` quantum 1D3Px lattice-gas system. The signal, which is ρ(6`, t), is
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Figure 11: Time history of the mass density at site x = 6` for a system with V = 7`
sites plotted versus time. A discrete Fourier transform of this time series data is taken to give
ρ∗

ω(x)ρω(x). A peak in the power spectrum, |ρω |2, occurs at about 0.72 `
τ
, which is close to

the expected sound speed. The abscissa is converted into unit of velocity, c = `
τ
, to show that

there is a unique sound speed. The ordinate has units of ( m
`

× τ)2.

measured at site x = 6`. Plotted above is the power spectrum of the Fourier
transform of the signal, which is |ρω|2, versus sound speed (this is proportional
to the oscillation frequeny, cs = `f). A peak in the power spectrum occurs
just below the mean-field approximation of sound speed, cs = 0.74 `τ , which is
plotted as the red vertical bar. (See Figure 2 for the mean-field value estimate
of cs).

4 Conclusion

The main results of this paper are as follows.
The quantum mechanical wave equation is recast as a lattice Boltzmann

equation describing a quantum lattice-gas system.
The continuity and Navier-Stokes equations constitute a macroscopic effec-

tive field theory for the quantum lattice-gas system and quantum entanglement
changes the value of the transport coefficients.

A symbolic math method was presented for simulating dynamical quantum
systems.

With reversible microscopic-scale dynamics, a feature of classical lattice
gases is that dissipation occurs at the macroscopic scale. However, viscous
damping is not observed in simulations of the quantum 1D3Px lattice-gas model,
which is also microscopically reversible.

The sound speed of mass density waves is the same as the classical value.
Given the memory and speed constraints of classical computers, today only
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small quantum lattice gas can be exactly simulated. I have performed many test
simulations of the quantum 1D3Px model for system sizes ranging from V = 3`
up to V = 7` and have included results from the V = 7` quantum simulation in
the paper, since this was the largest computer run.

I do not wish to argue that results obtained for such a small system, with
V = 7` sites, can give us too much insight about the true macroscopic behavior
of the quantum lattice gas, which is only well defined in the continuum limit.
Further testing is required on larger systems and in two and three dimensions
and will be presented in a subsequent paper. Yet, in the classical version of
the model, hydrodynamic like behavior is observed in very small systems (see
Figures 5 and 6). The type of behavior found in the small V = 7` quantum
lattice-gas system may also occur for larger systems. So, quantum lattice gases
of multiple grid sizes should be simulated. To this end, a compiled version of
quantum lattice-gas code is being developed in FORTRAN 90 and will be run
on available supercomputers.

The issue of the similarity or distinction between particle-particle correla-
tions (as occurs in classical lattice gases) and quantum entanglement (as occurs
in quantum lattice gases) has not been addressed in this paper. Yet, this is an
issue that can be studied using quantum lattice-gas simulations.
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A Derivation of the Quantum Lattice-Gas Trans-
port Equation in the Continuum Limit

In this appendix, I would like to rederive the transport equation (19) for the
quantum lattice-gas system. The derivation given here is carried out in the
continuum limit (imagine a space-time lattice with infinite resolution as the cell
size vanishes). All the usual restrictions arising from the discretization of the
microscopic quantities are temporarily removed. A particle can exist at any
point in space and time, and it can also have any momentum ~p = m~v. The
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only assumption I make here is that I can still decompose the space-time into
an ordered set of local states, which in this case is infinite but denumerable.
That is, I imagine there are an infinite number of local states at each point in
space (B = ∞), one corresponding to every possible particle momentum. Since
the number of points in the space is also infinite (V = ∞), the total number
of local states are doubly infinite (N = BV = ∞2). Nevertheless, I assume the
local states are well ordered and denumerable.

The probability of finding a particle with momentum ~p in the αth-local state
located at position ~x given by Equation (11) is the following matrix element:

f(~x, ~p, t) ≡ 〈Ψ(t)|n̂α|Ψ(t)〉. (95)

I assume f(~x, ~p, t) is a continuous and differentiable mesoscopic field quantity.
For the moment, suppose the α is the local state of an “incoming” particle,
preceding a possible collision event. I still want to imagine the particle dynamics
divided into mutually exclusive events (collision followed by streaming) repeated
in stepwise fashion ad infinitum. Next, the probability of finding a particle in
the local state, α′, corresponding to momentum ~p′ at position ~x′ = ~x+ τ

m~p
′, is

expressed by the matrix element

f(~x+
τ

m
~p′, ~p′, t+ τ) ≡ 〈Ψ(t+ τ)|n̂α′ |Ψ(t+ τ)〉. (96)

Suppose α′ is the local state of the “outgoing” particle. Then, a basic definition
of the total time derivative of f(~x, ~p, t) is the following ratio

df(~x, ~p, t)
dt

≡ lim
τ→0

f(~x+ τ
m~p

′, ~p′, t) − f(~x, ~p, t)
τ

, (97)

or, in terms of the matrix elements, it is

df(~x, ~p, t)
dt

= lim
τ→0

〈Ψ(t+ τ)|n̂α′ |Ψ(t+ τ)〉 − 〈Ψ(t)|n̂α|Ψ(t)〉
τ

. (98)

This is the seed of a Boltzmann equation for particle transport and the RHS of
this equation constitutes the collision term, although this may not appear quite
obvious at this point in the development. In the following development, I shall
interpret the collision term and rewrite it so that it explicitly depends only on
n̂α at position ~x and |Ψ(t)〉. In so doing, we shall see how the collision dynamics
is inherently encoded in this expression.

First, we add zero to the RHS of the above equation to write the collision
term in two parts, explicitly separating the total change into “temporal-change”
and “spatial-change” parts, as follows:

df(~x, ~p, t)
dt

= lim
τ→0

〈Ψ(t+ τ)|n̂α′ |Ψ(t+ τ)〉 − 〈Ψ(t)|n̂α′ |Ψ(t)〉
τ

+lim
τ→0

〈Ψ(t)|n̂α′ |Ψ(t)〉 − 〈Ψ(t)|n̂α|Ψ(t)〉
τ

.

(99)
From the time-displacement operation, eτ

∂
∂t f(~x, ~p, t) = f(~x, ~p, t + τ), we see

that the first term on the RHS of the above equation is a partial derivative with
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respect to time

∂f(~x+ τ
m~p, ~p, t)
∂t

+ O(Sh2) = lim
τ→0

〈Ψ(t+ τ)|n̂α′ |Ψ(t+ τ)〉 − 〈Ψ(t)|n̂α′ |Ψ(t)〉
τ

.

(100)
The Strouhal number, Sh, is defined as the ratio of the mean-free time to the
characteristic time scale (Sh ≡ τ

T ). Similarly, from the space-displacement
operation, eτ~v·∇f(~x, ~p, t) = f(~x + τ~v, ~p, t), we see that the second term is a
partial derivative with respect to position

~v·∇f(~x, ~p, t)+
1
2
(~v·∇)2f(~x, ~p, t)+O(Kn3) = lim

τ→0

〈Ψ(t)|n̂α′ |Ψ(t)〉 − 〈Ψ(t)|n̂α|Ψ(t)〉
τ

.

(101)
The Knudsen number, Kn, is defined as the ratio of the mean-free path to
the characteristic length scale (Kn ≡ `

L ). Therefore, we have the convective
derivative

df(~x, ~p, t)
dt

=
∂f(~x+ τ

m~p, ~p, t)
∂t

+~v ·∇f(~x, ~p, t)+
1
2
(~v ·∇)2f(~x, ~p, t)+O(Sh2,Kn3),

(102)
composed of a local term and a nonlocal advection term. In the local term, it
is technically correct (albeit unconventional) to explicitly write the partial time
derivative’s dependence on τ , even though τ → 0. This is done to stress an
equivalence with the matrix element formulation given by Equation (99).

Second, we rewrite the “local change” term. Since |Ψ(t+ τ)〉 = eiĤτ/h̄|Ψ(t)〉
and eiĤτ/h̄ = 1 + iĤτ/h̄+ O(τ2), we have

〈Ψ(t+ τ)|n̂α′ |Ψ(t+ τ)〉 = 〈Ψ(t)|n̂α′ |Ψ(t)〉 +
iτ

h̄
〈Ψ(t)|[n̂α′ , Ĥ]|Ψ(t)〉 + O(τ2).

(103)
Using this equation in conjuction with Equation (100), we have

h̄
∂f(~x+ τ

m~p, ~p, t)
∂t

= i〈Ψ(t)|[n̂α′ , Ĥ]|Ψ(t)〉. (104)

This result is expected, since in quantum mechanics, the partial time derivative
of an operator is found by calculating the commutator of that operator with the
Hamiltonian. Using this result, the Boltzmann equation Equation (99) becomes

df(~x, ~p, t)
dt

=
i

h̄
〈Ψ(t)|[n̂α′ , Ĥ]|Ψ(t)〉 + lim

τ→0
〈Ψ(t)|nα′ − nα

τ
|Ψ(t)〉. (105)

Now the RHS no longer depends on |Ψ(t+ τ)〉 (so it is local in time), but it is
still nonlocal in space because it depends on n̂α′ as well. That is, if the RHS
of the above equation were to depend only on n̂α, then it would have “strictly
local” form.

Third, using the fact that eiĤτ/h̄ ≡ ŜĈ, we can rewrite the commutator as

i

h̄
[n̂α′ , Ĥ] = lim

τ→0

e−iĤτ/h̄n̂α′eiĤτ/h̄ − n̂α′

τ
= lim
τ→0

Ĉ†Ŝ†n̂α′ ŜĈ − n̂α′

τ
. (106)
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Now, n̂α and n̂α′ are related by the similarity transformation (14), n̂α = Ŝ†n̂α′ Ŝ,
so the commutator reduces to

i

h̄
[n̂α′ , Ĥ] = lim

τ→0

Ĉ†n̂αĈ − n̂α′

τ
. (107)

Inserting this into Equation (105) gives the final local form of the quantum
Boltzmann equation for f(~x, ~p, t), which is

df(~x, ~p, t)
dt

= lim
τ→0

1
τ

〈Ψ(t)|Ĉ†n̂αĈ − n̂α|Ψ(t)〉. (108)

Notice that the collision term depends only on the wave function evaluated at
time t and the occupancy of the αth local state located at position ~x. However,
if there exists quantum superposition between particles at different points in
space, then |Ψ(t)〉 cannot be written in separable tensor product form over the
spatial points. So in this case, the collision term is “nonlocal.” Hence, when I say
the lattice-Boltzmann equation is local in form, I mean this in a pseudo-classical
sense, barring nonlocal quantum entanglements. And this is why I said in the
introduction of this paper that the lattice-Boltzmann equation, which accounts
for global entanglement through the collision process, is an exact reformulation
of the many-body Schrödinger equation.

There is one more point to make in this appendix. From the basic definition
(97) for the total time rate of change of f(~x, ~p, t), we see that Equation (108)
can be written as the following “finite-difference” equation

f(~x+
τ

m
~p′, ~p′, t) = f(~x, ~p, t) + 〈Ψ(t)|Ĉ†n̂αĈ − n̂α|Ψ(t)〉. (109)

This is the lattice-Boltzmann equation [see Equation (19) in Section 2.2.2]. It is
important to note that the Boltzmann equation is still an exact representation
of the particle dynamics, even when expressed in finite-difference form. This is
immediately obvious when the identity n̂α = Ŝ†n̂α′ Ŝ is inserted into the colli-
sion term, 〈Ψ(t)|Ĉ†S†n̂α′ ŜĈ − n̂α|Ψ(t)〉. Then, the lattice-Boltzmann equation
becomes a simple identity

f(~x+
τ

m
~p′, ~p′, t) = f(~x, ~p, t) + 〈Ψ(t+ τ)|n̂α′ |Ψ(t+ τ)〉 − 〈Ψ(t)|n̂α|Ψ(t)〉. (110)

In the case of a finite resolution lattice (used in a computational simulation of
the quantum lattice-gas system), the lattice-Boltzmann equation is the appro-
priate formulation of the particle dynamics. However, the quantum Boltzmann
equation (108), in differentiable point-form, becomes the appropriate formula-
tion of the particle dynamics when talking about the system in the continuum
limit.

B Representation of a Two-Qubit Gate for a 2-
Spin System

In this appendix, we show that Equation (35) is a manifestly unitary operator
that entangles two-qubits according to the SU(2) special unitary group. Let
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us consider a quantum spin system with only two spins. Then the Hilbert
space is four dimensional, and we choose the following basis kets in the number
representation:

|00〉 =




1
0
0
0


 , |10〉 =




0
1
0
0


 , |01〉 =




0
0
1
0


 , |11〉 =




0
0
0
1


 . (111)

In this basis, the creation operators are

â†
1 =




0 0 0 0
−1 0 0 0
0 0 0 0
0 0 −1 0


 , â†

2 =




0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0


 . (112)

Since â†
1 and â†

2 have real components, the annihilation operators are the trans-
pose of the matrices given in Equation (112): â1 = (â†

1)
T and â1 = (â†

1)
T . The

universal gate operator is expressed in terms of the following five operators:

â†
1â2 =




0 0 0 0
0 0 −1 0
0 0 0 0
0 0 0 0


 â†

2â1 =




0 0 0 0
0 0 0 0
0 −1 0 0
0 0 0 0


 (113)

and

n̂1(1−n̂2) =




0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 (1−n̂1)n̂2 =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


 1−n̂1−n̂2 =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1


 .

(114)
We can represent a block diagonal 4 × 4 unitary matrix in terms of these five
operators as follows




1 0 0 0
0 A B 0
0 C D 0
0 0 0 −1


 = An̂1(1−n̂2)−Bâ†

1â2−Câ†
2â1+D(1−n̂1)n̂2+1−n̂1−n̂2.

(115)
When the 2 × 2 block is a member of SU(2) as given by Equation (33), this
expression for a unitary matrix becomes a representation of a universal gate
given by Equation (35).

In this appendix, we used a two-spin quantum system as an example system
for illustrating how a universal gate can be expressed in terms of the multispin
creation and annihilation operators. Although we used a two-spin system in
this example, the procedure outlined here also works for a spin system with an
arbitrary number of spins.
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All permutations of single fermion states may be implemented by successive
application of a “interchange operator” [22], here denoted by χ̂αβ′ , where the
permutations occur between state α at site ~x and states β′ at site ~x′

χ̂αβ′ = â†
αâβ′ + â†

β′ âα + 1 − â†
αâα − â†

β′ âβ′ . (116)

This is a special case of the universal quantum gate, Υαβ′ where θ = π
2 , ξ = 0

and ζ = 0. The interchange operator correctly handles any necessary phase
change due to the anti-commutation relations (34).
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